A new optimization method: Big Bang-Big Crunch
نویسندگان
چکیده
Nature is the principal source for proposing new optimization methods such as genetic algorithms (GA) and simulated annealing (SA) methods. All traditional evolutionary algorithms are heuristic population-based search procedures that incorporate random variation and selection. The main contribution of this study is that it proposes a novel optimization method that relies on one of the theories of the evolution of the universe; namely, the Big Bang and Big Crunch Theory. In the Big Bang phase, energy dissipation produces disorder and randomness is the main feature of this phase; whereas, in the Big Crunch phase, randomly distributed particles are drawn into an order. Inspired by this theory, an optimization algorithm is constructed, which will be called the Big Bang–Big Crunch (BB–BC) method that generates random points in the Big Bang phase and shrinks those points to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. It is shown that the performance of the new (BB–BC) method demonstrates superiority over an improved and enhanced genetic search algorithm also developed by the authors of this study, and outperforms the classical genetic algorithm (GA) for many benchmark test functions. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملHYBRID ARTIFICIAL PHYSICS OPTIMIZATION AND BIG BANG-BIG CRUNCH ALGORITHM (HPBA) FOR SIZE OPTIMIZATION OF TRUSS STRUCTURES
Over the past decades, several techniques have been employed to improve the applicability of the metaheuristic optimization methods. One of the solutions for improving the capability of metaheuristic methods is the hybrid of algorithms. This study proposes a new optimization algorithm called HPBA which is based on the hybrid of two optimization algorithms; Big Bang-Big Crunch (BB-BC) inspired b...
متن کاملBIG BANG – BIG CRUNCH ALGORITHM FOR LEAST-COST DESIGN OF WATER DISTRIBUTION SYSTEMS
The Big Bang-Big Crunch (BB–BC) method is a relatively new meta-heuristic algorithm which inspired by one of the theories of the evolution of universe. In the BB–BC optimization algorithm, firstly random points are produced in the Big Bang phase then these points are shrunk to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. In this paper, the...
متن کاملAn Improved Big Bang-Big Crunch Algorithm for Estimating Three-Phase Induction Motors Efficiency
Nowadays, the most generated electrical energy is consumed by three-phase induction motors. Thus, in order to carry out preventive measurements and maintenances and eventually employing high-efficiency motors, the efficiency evaluation of induction motors is vital. In this paper, a novel and efficient method based on Improved Big Bang-Big Crunch (I-BB-BC) Algorithm is presented for efficiency e...
متن کاملEVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS
Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers t...
متن کاملEstimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms
Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Engineering Software
دوره 37 شماره
صفحات -
تاریخ انتشار 2006